翻訳と辞書 |
Circular prime : ウィキペディア英語版 | Circular prime
A circular prime is a prime number with the property that the number generated at each intermediate step when cyclically permuting its (base 10) digits will be prime. For example, 1193 is a circular prime, since 1931, 9311 and 3119 all are also prime. A circular prime with at least two digits can only consist of combinations of the digits 1, 3, 7 or 9, because having 0, 2, 4, 6 or 8 as the last digit makes the number divisible by 2, and having 0 or 5 as the last digit makes it divisible by 5.〔 The complete listing of the smallest representative prime from all known cycles of circular primes (The single-digit primes and repunits are the only members of their respective cycles) is 2, 3, 5, 7, 11, 13, 17, 37, 79, 113, 197, 199, 337, 1193, 3779, 11939, 19937, 193939, 199933, R19, R23, R317 and R1031, where R''n'' is a repunit prime with ''n'' digits. There are no other circular primes up to 1023.〔 A type of prime related to the circular primes are the permutable primes, which are a subset of the circular primes (every permutable prime is also a circular prime, but not necessarily vice versa).〔 == Other bases == The circular primes in base 12 are (lists the smallest representative prime from all the cycles) :2, 3, 5, 7, Ɛ, 11, 15, 57, 5Ɛ, 111, 117, 11Ɛ, 175, 1Ɛ7, 157Ɛ, 555Ɛ, 11111, 115Ɛ77, ... In base 2, only Mersenne primes can be circular primes, since any 0 permuted to the one's place results in an even number.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Circular prime」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|